Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Allergy ; 77(11): 3377-3387, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35841382

RESUMO

BACKGROUND: The mechanisms by which genetic and environmental factors interact to promote asthma remain unclear. Both the IL-4 receptor alpha chain R576 (IL-4RαR576) variant and Notch4 license asthmatic lung inflammation by allergens and ambient pollutant particles by subverting lung regulatory T (Treg ) cells in an IL-6-dependent manner. OBJECTIVE: We examined the interaction between IL-4RαR576 and Notch4 in promoting asthmatic inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) of asthmatics were analyzed for T helper type 2 cytokine production and Notch4 expression on Treg cells as a function of IL4RR576 allele. The capacity of IL-4RαR576 to upregulate Notch4 expression on Treg cells to promote severe allergic airway inflammation was further analyzed in genetic mouse models. RESULTS: Asthmatics carrying the IL4RR576 allele had increased Notch4 expression on their circulating Treg cells as a function of disease severity and serum IL-6. Mice harboring the Il4raR576 allele exhibited increased Notch4-dependent allergic airway inflammation that was inhibited upon Treg cell-specific Notch4 deletion or treatment with an anti-Notch4 antibody. Signaling via IL-4RαR576 upregulated the expression in lung Treg cells of Notch4 and its downstream mediators Yap1 and beta-catenin, leading to exacerbated lung inflammation. This upregulation was dependent on growth factor receptor-bound protein 2 (GRB2) and IL-6 receptor. CONCLUSION: These results identify an IL-4RαR576-regulated GRB2-IL-6-Notch4 circuit that promotes asthma severity by subverting lung Treg cell function.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Asma/genética , Modelos Animais de Doenças , Inflamação , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo , Receptores de Interleucina-4/metabolismo , Linfócitos T Reguladores
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969849

RESUMO

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2-specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.


Assuntos
COVID-19/imunologia , Células Epiteliais/imunologia , Monócitos/imunologia , SARS-CoV-2/patogenicidade , Adulto , Linfócitos B/imunologia , COVID-19/patologia , Criança , Técnicas de Cocultura , Ebolavirus/patogenicidade , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Inflamação , Vírus da Influenza A/patogenicidade , Pulmão/imunologia , Células Mieloides/imunologia , Especificidade da Espécie , Proteínas Virais/imunologia
4.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
6.
J Clin Immunol ; 35(3): 280-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25739914

RESUMO

BACKGROUND: Recombination-activating gene (RAG) 1 and 2 deficiency is seen in patients with severe combined immunodeficiency (SCID) and Omenn syndrome. However, the spectrum of the disease has recently expanded to include a milder phenotype. OBJECTIVE: We analyzed a 4-year-old boy who was initially given the diagnosis of selective immunoglobulin A deficiency (SIgAD) based on immunoglobulin serum levels without any opportunistic infections, rashes, hepatosplenomegaly, autoimmunity or granulomas. The patient was found to be infected with varicella zoster; however, the clinical course was not serious. He produced antiviral antibodies. METHODS: We performed lymphocyte phenotyping, quantification of T cell receptor excision circles (TRECs) and kappa deleting recombination excision circles (KRECs), an analysis of target sequences of RAG1 and 2, a whole-genome SNP array, an in vitro V(D)J recombination assay, a spectratype analysis of the CDR3 region and a flow cytometric analysis of the bone marrow. RESULTS: Lymphocyte phenotyping demonstrated that the ratio of CD4+ to CD8+ T cells was inverted and the majority of CD4+T cells expressed CD45RO antigens in addition to the almost complete lack of B cells. Furthermore, both TRECs and KRECs were absent. Targeted DNA sequencing and SNP array revealed that the patient carried a deletion of RAG1 and RAG2 genes on the paternally-derived chromosome 11, and two maternally-derived novel RAG1 missense mutations (E455K, R764H). In vitro analysis of recombination activity showed that both RAG1 mutant proteins had low, but residual function. CONCLUSIONS: The current case further expands the phenotypic spectrum of mild presentations of RAG deficiency, and suggests that TRECs and KRECs are useful markers for detecting hidden severe, as well as mild, cases.


Assuntos
Proteínas de Homeodomínio/genética , Deficiência de IgA/sangue , Deficiência de IgA/genética , Pré-Escolar , Proteínas de Homeodomínio/metabolismo , Humanos , Deficiência de IgA/imunologia , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/metabolismo , Recombinação V(D)J
7.
J Clin Immunol ; 34(5): 551-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817258

RESUMO

PURPOSE: To identify mechanisms of disease in a child born to consanguineous parents, who presented with Omenn syndrome (OS) and was found to carry a heterozygous RAG1 mutation in peripheral blood DNA. METHODS: Mutation analysis was performed on whole blood and buccal swab DNA. Recombination activity of the mutant RAG1 protein and diversity of T cell repertoire were tested. RESULTS: Apparent heterozygosity for a novel, functionally null RAG1 mutation in peripheral blood DNA from a patient with OS was shown to be secondary to true somatic reversion. Analysis of T cell repertoire demonstrated expression of various TCRBV families, but an overall restricted pattern. CONCLUSIONS: This is the first case of true somatic reversion of a RAG1 mutation in a patient with OS. The reversion event likely occurred at a stage where only a limited pool of T cell progenitors capable of performing V(D)J recombination could be generated. This work emphasizes the importance of performing functional studies to investigate the significance of novel genetic variants, and to consider somatic reversion as a possible disease modifier in SCID.


Assuntos
Proteínas de Homeodomínio/genética , Mosaicismo , Imunodeficiência Combinada Severa/genética , Transposases/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Análise Mutacional de DNA , Genótipo , Transplante de Células-Tronco Hematopoéticas , Heterozigoto , Proteínas de Homeodomínio/sangue , Humanos , Lactente , Masculino , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , Imunodeficiência Combinada Severa/terapia , Linfócitos T/imunologia , Linfócitos T/patologia , Transposases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA